[22] CT-FEM ASM (Stress analysis of asymmetry gears) **English version**

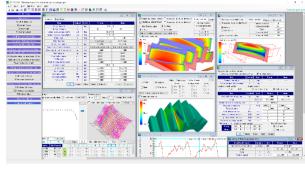


Fig.22.1 CT-FEM ASM

22.1 Abstract

Asymmetric gears can increase tooth loading capacity without changing gear size or material. Compared to standard pressure angle, Hertz stress decreases, friction coefficient and sliding ratio are small. Therefore, the flash temperature is low. For details, please refer to [Appendix H].

CT-FEM ASM is FEM stress analysis software for asymmetric tooth gear. Like CT-FEM Opera iii, it can calculate flash temperature, friction coefficient, oil film thickness, occurrence probability and lifetime of scuffing and wear, and addition of tooth edge contact analysis and optimal tooth surface modification function. Fig.22.1 shows the whole screen.

22.2 Software structure

The structure of **CT-FEM ASM** is shown in Table 22.1. \bigcirc in the table is included in the basic software, and \bigcirc is optional. Applicable gear: involute spur and helical gear (external gear, internal gear)

Item	Structure
$\langle 1 \rangle$ Basic rack (asymmetry tooth profile)	0
<2> Gear dimension	0
<3> Meshing drawing	0
<4> Tooth modification	0
$\langle 5 \rangle$ Tooth surface stress distribution (3D)	0
$\langle 6 \rangle$ Tooth surface evaluation ⁽¹⁾	
friction coefficient, oil film thickness,	0
calorific potential, Power loss, PV, PVT	
$\langle 7 \rangle$ Scuffing probability of occurrence ⁽¹⁾	0
$\langle 8 \rangle$ Wear probability of occurrence ⁽¹⁾	0
<9> Life time ⁽¹⁾	0
$\langle 10 \rangle$ Power loss ⁽¹⁾	0
<11>3D-FEM	0
<12> Edge contact analysis	0
<13> Transmission analysis, Fourier analyses, CSV	0
<14> Internal gear	0
<15> Best tooth surface modification	0
(1) Doesn't suppo	ort a plastic gear

Table 22.1 software structure

22.3 Property (Basic rack)

A setting screen is shown to Fig.22.3.

- Gear combination : external × external, external × internal
- Basic rack : standard, low, special
- tooth tip circle decision : normal, equal clearance

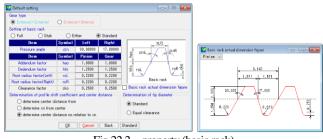


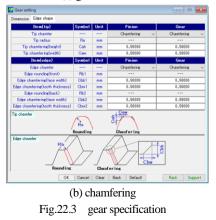
Fig.22.2 property (basic rack)

22.4 Gear dimensions

Gear dimension calculates parts dimensions, contact ratio, sliding ratio, tooth thickness and so on. The gear with undercut determines the contact rate based on the TIF (True Involute Form) diameter. If tooth tip is rounded, R and C is considered in contact ratio.

(1) center distance and shift coefficient have the following 3 relationships. <1> shift coefficient is given to pinion and gear to determine center distance.

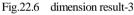
- <2> based on center distance, shift factor of each gear is determined.
- <3> center distance is set, regardless of shift coefficient.

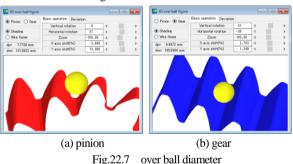

(2) shift coefficient is set per following 4 types;

- <1> directly enter shift coefficient
- <2> based on split tooth thickness, shift coefficient is set
- <3> based on over ball dimension, shift coefficient is set
- <4> addendum modification, shift coefficient is set

For inputting dislocation coefficients, in addition to the direct input method of dislocation coefficients, the dislocation coefficients can also be inversely calculated based on the tooth thickness. Since it is not possible to measure the "tangential tooth thickness" of the asymmetric tooth gear, it is not included in the setting method of the dislocation coefficient. Fig.22.3 shows the specification setting screen, and Fig.22.4 to 22.6 shows the dimensional results. Fig.22.7 shows the over ball measurement position map of the asymmetric tooth gear.

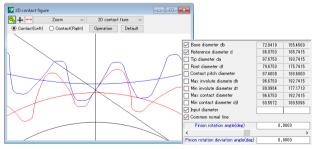
imension	Edge shape							
	Item	Symbol	Unit	Pi	nion		Gear	
N	ormal module	mn	mm		4.1	00000		
Nu	mber of teeth	2		19			41	
Normal p	ressure angle(Left)	æn	deg		30.	00000		
Normal pr	essure angle(Right)	an	deg		17.	00000		
	Helix angle	β	deg	28	1 0		0.00	1
н	elix direction			Righ	t hand	~	Left hand	_
Refe	rence diameter	d	mm	86	.0753		185.7415	
Input type	e of tooth thickness			Profile shift	t coefficient	~ Profil	le shift coefficie	ent 🕤
Normal pro	ofile shift coefficient	xn		0	.45000		0.00000	_
E	all diameter	dp	mm	*	1881		88888	
Ove	r ball distance	dm	mm	*	4684		84448	
1	Profile shift	xm		*	1881		88888	
Tooth th	inning for backlash	fn	mm	0	.00000		0.00000	
Ce	nter distance	a	mm		138.	00000		
1	ip diameter	da	mm	97	.67532		183.74149	
R	oot diameter	df	mm	79	.67532		175.74149	
Ros	ot radius(Left)	RfL	mm	0	.88000		0.88000	
Roo	t radius(Right)	RfR	mm	0	.88000		0.88000	_
	Face width	b	mm	35	.00000		30,00000	

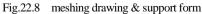

iear Contact Others				
Item	Symbol	Unit	Pinion	Gear
Transverse module	mt	mm	4.5	303
Transverse pressure angle	αt	deg	33.1803(L) /	/ 19.0990(R)
Base helix angle	βb	deg	23.9898(L) /	/ 26.6768(R)
Base diameter	db	mm	72.0410(L) / 81.3373(R)	155.4569(L) / 175.5173(R)
Tooth depth	h	mm	9.0000	9.0000
Cutting profile shift coefficient	xnc		0.4500	0.0000
Min involute diameter(TIF)	dt	mm	80.9964(L) / 82.2786(R)	177.1718(L) / 178.7837(R)
Max involute diameter	dh	mm	96.6753(L) / 96.6753(R)	192.7415(L) / 192.7415(R)
Normal circular tooth thickness	sn	mm	7.8727	6.2832
Fransverse circular tooth thickness	st	mm	8.9164	7.1161
Over ball diameter	dp	mm	7.7738	6.9972
Over ball distance(Reference)	dm	mm	101.0832	195.6964
Over ball distance(Design)	dm'	mm	101.0832	195.6964


Fig.22.4 dimension result-1

iear Contact Others				
Item	Symbol	Unit	Pinion	Gear
Transverse contact module	cεwt	deg	34.4857(L)	/ 21.4664(R)
Contact helix angle	βw	deg	28.	3643
Contact pitch diameter	dw	mm	87.4000	188.6000
Teeth number ratio	zh		2.1579	0.4634
Effective face width	bw	mm	30.	0000
Clearance	ck	mm	1.2916	1.2916
Transverse contact ratio	εα		0.9292(L)	/ 1.1485(R)
Overlap contact ratio	εβ		1.1208(L)	/ 1.1208(R)
Total contact ratio	εγ		2.0500(L)	/ 2.2693(R)
Sliding ratio	σ1		-0.2474(L) / -0.7278(R)	0.1988(L) / 0.4212(R)
Sliding ratio	σ2		0.3401(L) / 0.5676(R)	-0.5154(L) / -1.3129(R)
Transverse backlash	Jt	mm	0.3010(L)	/ 0.3398(R)
Backlash angle	Jθ	deg	0.4788	0.2219
Contact diameter(max)	dja	mm	96.6753(L) / 96.6753(R)	192.7415(L) / 192.7415(F
Contact diameter(min)	djf	mm	83.5572(L) / 84.0954(R)	180,5396(L) / 182,1619(R

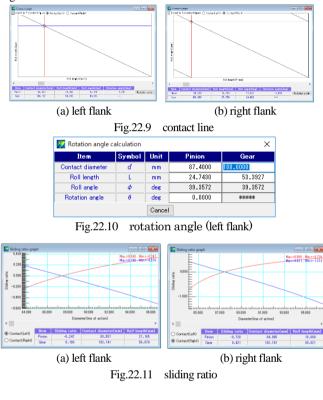
Fig.22.5 dimension result-2


Result of dimension					
Gear Contact Others					
Item		Symbol	Unit	Pinion	Gear
Max contact stress(membrane e	lement stress)	σh	MPa	1700.	.05
Element number				55698	45337
Node number				93335	76184
Max bending stress(J 1)	σ1	MPa	498.55	566.29
Max bending element	No.			36023	29400



25.5 Tooth profile

Meshing drawing is shown in Fig.22.8. As shown in support form, zoom, distance measurement, R-measurement, diameter, involute modification, line of action, display and rotation function are available.



22.6 Contact line and sliding ratio graph

The contact line graph is shown in Fig.22.9. This graph shows the

relation of the meshing well because the line of action length of the gear is shown in the vertical axis with the line of action length of the pinion shown in the transverse. In the Fig.22.9, when the contact diameter of the pinion is 85.853 mm, the contact diameter of the gear is 190.192 mm. Also, the line of action length of this pinion is 23.350 mm and the gear is 54.786 mm.

Moreover, the meshing of the tooth can be grasped because are connected with contact profile (Fig.22.8). The rotation angle computation (Fig.22.10) is the auxiliary calculation function to compute relation between the contact diameter, the line of action length and the roll angle and then the rotation angle. And, the sliding ratio graph is shown in Fig.22.11.

22.7 Tooth surface element setting

The tooth surface element setting is shown in Fig.22.12. It sets a torque, and Young's modulus, Poisson's ratio and then the tooth profile distribution number and a pitch error with this screen. The plastic gear can be analyzed by setting Young's modulus and Poisson's ratio. The analysis tooth profile can choose 1 tooth, 3 teeth, 5 teeth. It chooses 5 teeth when total contact ratio is big.

22.8 The profile and lead modification setting

There are a profile and lead modification and three kinds (Type1-3) of the fixed form respectively. In this example, it gives the pinion a profile modification (Fig.22.13, 22.14) but a gear isn't modification. Incidentally, in this example, the gear is not modification.

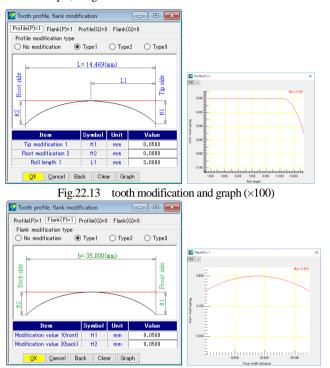


Fig22.14 lead modification and graph (×100)

22.9 Tooth modification (3D) setting

Like Fig.22.15, the tooth surface modification (3D) can type in directly. Also, the profile modification which was set at Fig.22.13 and Fig.22.14 can be taken over, too. As for Fig.22.15, it is displaying the modification which was set at Fig.22.13 and Fig.22.14 by 3D-profile (gear is a theory tooth profile.). This tooth profile can be output by the [CSV] file. Also, this screen can read the inspection data (csv).

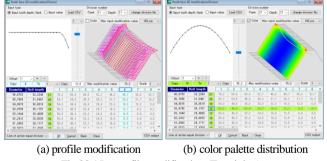
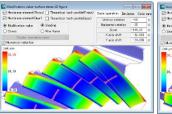
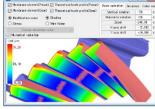




Fig.22.15 profile modification (Ex. pinion)

22.10 Profile modification & tooth surface stress (3D)

The tooth profile which was set with the Fig.22.15 can be confirmed with 3D figure. The gear can be turned by the support form and it is possible to make it magnify a gear figure. Moreover, the contact pattern by the tooth when giving an error can be confirmed. Fig.22.16(a) is a modified tooth profile and (b) is the adjusted figure which piled a theory tooth profile on it. Also, a tooth surface element mesh model is shown to Fig.22.17.

(a) tooth modification Fig.22.16

(b) tooth modification + profile tooth surface element

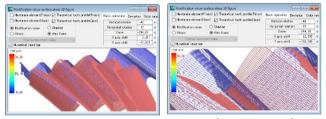


Fig.22.17 tooth surface element model (mesh / Fig22.12)

22.11 Tooth surface stress analysis condition setting

The gear specification and torque and then, it analyzes the tooth surface stress when giving a tooth surface modification. There are two 1 angle pitch and maximum contact angle kinds of setting of an analysis angle range (Free angle can be set). It sets start angle θ_s =-28.578° and end angle $\theta_e=36.102^\circ$ like Fig.22.18 as the computation and divide that contact angle into 60. Then calculate by giving discrepancy error $\varphi_1=0.01^\circ$ and parallelism error $\varphi_2=-0.001^\circ$. This axis angle error is the error angle when the bearing or the gear box is distorted by the load, which causes a change in the tooth contact and a change in the stress distribution.

lotation angle(θs,θe) 1 pitch a		Max cont	act angle	
Item	Symbol	Unit	Value	
Start rotation angle	θs	deg	-18.078	1
End rotation angle	θe	deg	24.304	
Angle division number	N		60	
Crossed angle error	φ1	deg	0.0100	Para
Parallelism error	φ2	deg	-0.0010	Crossed error 01

Fig.22.18 tooth surface analysis setting screen, ϕ_1 and ϕ_2

22.12 Tooth surface stress analysis result (3D diagram)

The results of the tooth surface stress analysis are shown in Fig.22.19. In addition, the stress distribution with narrowed stress range is shown in Fig.22.20. In this way, by narrowly displaying the stress range, the range where large stress is generated is well understood. Also, as shown in Figure 22.21, the rotation angle of the pinion with the maximum stress (σ_{Hmax} =1700 MPa) is θ_{p} =-3.711° and the minimum stress (σ_{Hmin} =1498 MPa) is $\theta_p=7.064$ °.

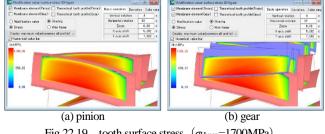


Fig.22.19 tooth surface stress (σ_{Hmax} =1700MPa)

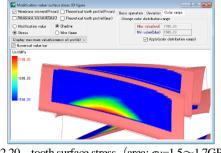


Fig.22.20 tooth surface stress (area: $\sigma_{\rm H}=1.5\sim1.7$ GPa)

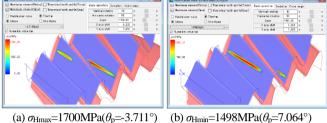


Fig.22.21 tooth surface stress (max. and min.)

The stress distribution (cell display) of the entire tooth surface is shown in Fig.22.22. In the case of example, we display the stress in the area of 98 in the tooth width direction (including the tooth width chamfer) and 70 in the tooth direction (including the tooth tip chamfer) so the stress value at the tooth surface position is understood. In addition, the stress value displayed here can be output as a CSV file. Stress at each rotation angle can display stress distribution corresponding to pinion rotation angle continuously as shown in Fig. 22.23, so it is possible to grasp stress change and contact position.

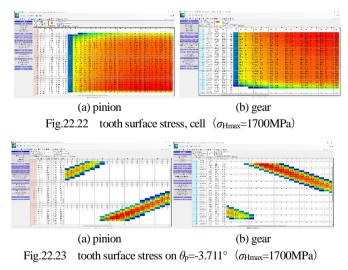


Fig.22.24 shows the setting screen for flash temperature calculation. Here, material (thermal conductivity) is selected in addition to the rotation speed and tooth surface roughness (Fig. 22.25). Mineral oils and synthetic oils can be selected for the type of lubricant, but in case of nonstandard, kinematic viscosity and average temperature of oil can be arbitrarily set. Calculation results of flash temperature, coefficient of friction, oil film thickness are shown in Fig.22.26 to 22.33. The probability of occurrence of scuffing and probability of wear are shown in Fig.22.34.

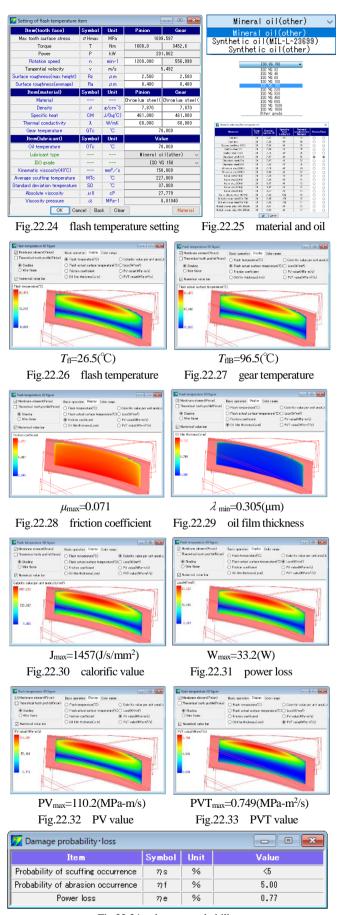


Fig.22.34 damage probability

22.14 Edge analysis (option)

In paragraphs 22.11 to 22.14, we analyzed the involute tooth surface, but here we show the result of the end analysis of the tooth tip and side part (Fig.22.35, end set at R = 1.0 mm).

As a result of analysis, as shown in Fig.22.36, large stress σ_{Hmax} =4423 MPa is generated in pinion tooth and gear tooth tip. In the analysis of the involute tooth surface, the flash temperature is 26.5 ° C at the tooth tip as shown in Fig.22.26. However, in the edge analysis, it can be seen that as shown in Fig.22.37, the pinion tooth rose greatly to 105 ° C.

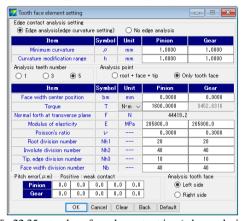


Fig.22.35 tooth surface element setting (edge analysis)

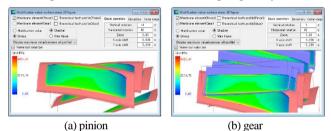
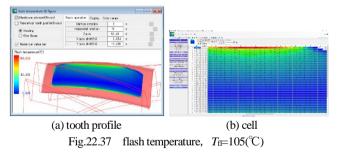



Fig.22.36 tooth surface stress (edge analysis, σ_{Hmax} =4423MPa)

22.15 FEM analysis

In the analysis condition of Fig.22.12, to make FEM analysis, create a mesh model in Fig.22.38. Here we create a mesh with the standard model, but there are two ways of setting, one is to determine the tooth profile with accuracy and the other is to determine the tooth profile by the number of divisions.

Fig.22.38 mesh model setting

The meshed teeth can be confirmed with the 2D mesh model as shown in Fig.22.39 or the 3D mesh model in Fig.22.40. Also, 3D-FEM mesh elements can display coordinates and nodes as shown in Fig.22.41.

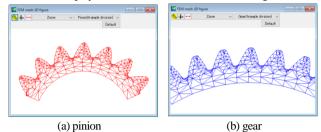
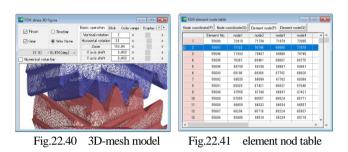
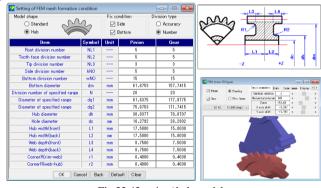
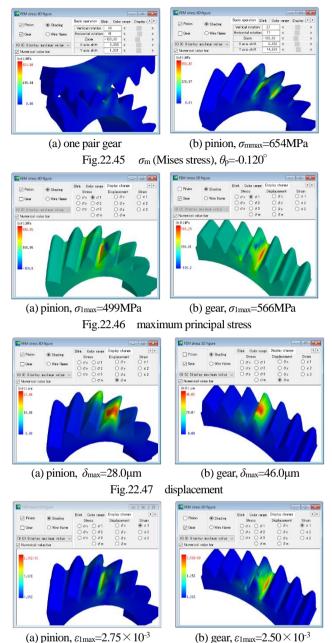



Fig.22.39 2D-mesh model

The mesh model can be generated as a rim / hub model as shown in Fig.22.42, so it is effective for gears with low elastic modulus like plastic gears.




Fig.22.42 rim / hub model

Next, an example of FEM analysis using the mesh model set in Fig.22.38 is explained below. Since the angle (-28.578 ° to 36.102 °) set in the tooth surface analysis setting in Fig.22.18 is divided into 60, the angle of $\theta_P = 14.247$ ° (Fig.22.21) with the largest tooth surface stress is selected and subjected to FEM analysis. If you want to know the change in the bending stress within the meshing angle, check the \Box in Fig. 22.43 to calculate 60 pairs of bending stress. Since the number of analyzes is large, it is effective to select only the required meshing angle and calculate. The items to be analyzed are the stress, displacement and strain shown in Fig.22.45. FEM analysis results are shown in Fig.22.45 ~ 22.48.

	Pinion	Gear	^			
Rotation angle-2.993(deg)						
Rotation angle-2.275(deg)						
Rotation angle-1.556(deg)						
Rotation angle-0.838(deg)						
Rotation angle-0.120(deg)				Blink Color range	Display change	
Rotation angle0.599(deg)				Stress	Displacement	Strai
Rotation angle1.317(deg)				Ο σχ 🖲 σ1	Οðx	ء ()
Rotation angle2.035(deg)				Ο σ γ Ο σ 2	Ody	3 ()
Rotation angle2.754(deg)			~	0	0	0

Fig.22.43 FEM analysis choice Fig.22.44 kind of the analysis

AMTEC www.amtecinc.co.jp

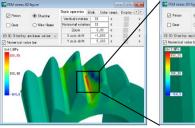

(a) pinion, $\varepsilon_{1\text{max}}=2.75\times10^{-3}$ Fig.22.48

Fig.22.48 distortion

In the analysis result table of Fig.22.49, it is understood that the element number of the maximum value σ_{1max} =499MPa of the maximum principal stress of the pinion is 336023. If you enter this number in "Blink" in Fig.22.50, it can be confirmed in the stress distribution chart (\blacktriangle :flashes). After the FEM analysis result, as shown in Fig.22.51, stress at any position in the tooth width direction can be displayed. Fig.22.51 shows the stress at the tooth width center position (zd=-3 mm).

Display	maximum value	~ 08									
levent sty	Eler	ent stressol	Note-	displacement	(LL #) Node	displacement	G(n shairP M	ein strainG		
	Element No.	σ×	dy	d2	τo	Typ	T2X	σ1	02	01	da e
× 1	\$\$122	312.19	230.24	76.35	225.67	-\$.25	-4.15	491.55	75.25	22,39	665.99
2	26820	289.10	215.70	\$1,93	\$29,64	-12.25	-5.75	433.48	94.88	31.06	434,12
8	26824	267.71	225.75	45.45	222.85	-32.49	-39.50	487.74	29.79	21,29	452.21
4	26119	\$17,37	192.91	\$3.43	216,54	-24.59	-15.23	433.15	37.58	29.53	423.41
5	26122	217.58	194.22	72.78	21150	-01.75	-83.51	473.95	\$5.54	28.97	433.92
6	15722	\$\$2.75	112.20	117.14	183,16	-14.33	-65.73	479,68	186.53	35.56	412.51
7	26259	224.55	21,97	-59.34	221.25	15.37	20.45	477.89	-46.51	-227.92	\$34.97
0	26813	277.24	227.00	\$2.05	223,42	-11.24	-7.27	477.60	92.52	20.00	421.57
8	35723	305.47	105.87	119.71	161.61	-38.74	-58.34	471.55	107.75	28.73	489.70
33	26256	195.04	95.75	-18,71	\$17,40	66.43	39.19	473,60	-24.12	-185.78	534,78
11	16120	010.29	100.17	99.18	268.21	-25.25	-25.72	47172	\$5.00	22,92	410.01
12	26260	239.07	15.52	-96.12	\$25.10	67.93	-54.32	471.65	-\$9.62	-261.76	653.92
13	36122	212.85	105.93	09.38	218.50	-21.12	-17.95	47151	11.05	28.51	415.03
34	35711	171,65	128.17	127.88	172.58	-42.00	-48.73	470,82	118,00	29,70	414,17
15	36110	218.43	190.84	99.74	264.09	-20.83	-19.91	453.34	\$7.09	22.79	487.30
15	15700	367.11	125.25	124.78	175.24	-41.52	-45.13	409.12	117,41	30,16	402.54
17	15705	262.11	129.31	121.44	178.30	-37.85	-44.95	461.90	112.55	21.43	482.75
18	15707	363.31	124.82	124.86	179,00	-11.79	-42.51	400.24	117.35	26.31	404.27
29	15712	272.55	110.55	127.75	168.10	-07.15	-47.63	487.55	119.87	22.54	298,70
c **	14 333	8.8.0 310		114.41	125.04			412 44	113.00	33.04	

Fig.22.49 analysis result list

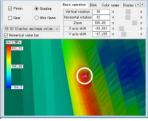


Fig.22.50 pinion, σ_{1max} point, σ_{1max} =499MPa

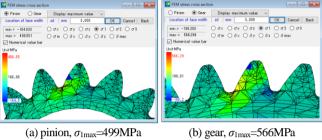
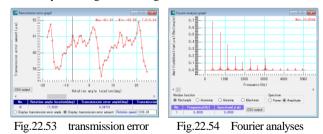


Fig.22.51 FEM-section (zd=3mm)

22.16 Lifetime


Calculate lifetime after tooth surface stress analysis and FEM analysis. Fig.45.52 shows the lifetime when the allowable stress value for material's tooth surface strength is σ_{Him} =2000 MPa and the allowable stress value for bending strength is σ_{Flim} =400 MPa.

💯 Lifespan calculation										
Item	Symbol	Unit	Pinion	Gear						
Max contact stress	σHmax	MPa	1699.597	1700.049						
Max bending stress(σ 1)	σ1	MPa	498.551	566.294						
Rotation speed	n	min-1	1200.000	556.098						
Allowable Hertzian stress	σ Hlim	MPa	2000.000	2000.000						
Allowable bending stress	σFlim	MPa	400.000	400.000						
Overload cycles	Ne		1							
Nitride material			No nitride r	naterial \sim						
Working condition			Norma	al V						
Item(contact)	Symbol	Unit	Pinion	Gear						
Expected stress repeat factor	ZN'		0.850	0.850						
Expected lifespan load number	No		1.00E+10	1.00E+10						
Expected lifespan	Lo	hrs	1.39E+05	3.00E+05						
Item(bending)	Symbol	Unit	Pinion	Gear						
Expected stress repeat factor	ZN'		1.246	1.416						
Expected lifespan load number	No		6.55E+05	2.25E+05						
Expected lifespan	Lc	hrs	9.10E+00	6.74E+00						
Calculate	Cancel	Back	Clear							

Fig.22.52 lifetime

22.17 Transmission error (option)

Fig.22.53 and Fig.22.54 show the rotation transmission errors and Fourier analysis results within the rotation angle given on the tooth surface analysis setting screen in Fig.22.18.

22.18 Analysis of optimal tooth surface modification (option) Optimal modification value analysis

As shown in Fig.22.14, when considering the torque and the shaft angle error instead of uniformly determining the tooth surface modification, it is a function that can determine the amount of correction that minimizes the tooth surface stress.

As an example, Fig.22.55 and Fig.22.56 show the optimal tooth

surface modification calculated using the torque in Fig. 22.3 and the axis angle error in Fig.22.18 with the gear.

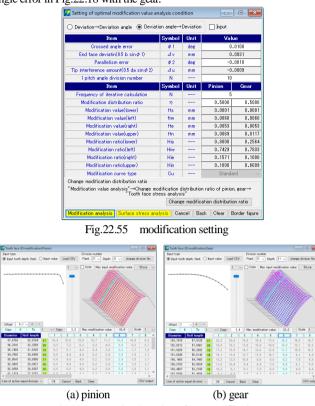


Fig.22.56 optimal tooth surface modification

Next, Fig.22.57 of the tooth surface stress analyzed with the tooth profile of Fig.22.56 is 28% lower than σ_{Hmax} =1700 MPa in Fig.22.19. Fig. 22.58 shows the flash temperature and Fig.22.59 shows the friction coefficient distribution.

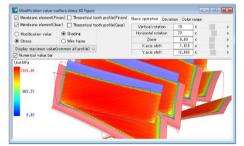
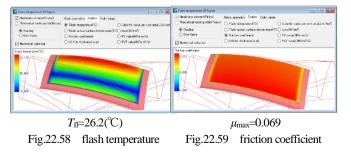



Fig.22.57 tooth surface stress (σ_{Hmax} =1330MPa)

22.19 Analysis of the internal-gear (option)

The analysis result of "external gear \times internal gear" is shown Fig.22.60 to 22.77

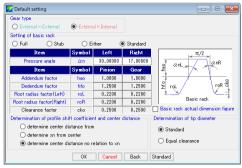
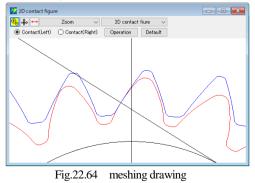


Fig.22.60 basic rack

Dimension Edge shape								
Item	Symbol	Unit		Pinion			Gear	
Normal module	mn	mm			4.000	00		
Number of teeth	z		1	9			55	
Normal pressure angle(Left)	αn	deg			30.000	00		
Normal pressure angle(Right)	æn	deg			17.000	00		
Helix angle	β	deg	28	*	0	,	0.00)
Helix direction			Rie	sht hand	~		Ris	ht hand
Reference diameter	d	mm	8	6.0753			249.165	54
Input type of tooth thickness			Profile sh	nift coeffic	ient v	Profile	shift co	efficient
Normal profile shift coefficient	xn			0.45000			0.300	00
Ball diameter	dp	mm		86988			8866	k .
Over ball distance	dm	mm		86488			38643	ĸ
Profile shift	xm			86488			88649	k
Tooth thinning for backlash	fn	mm		0.00000			0.000	000
Center distance	a	mm			80.500	00		
Tip diameter	da	mm	8	7.67532			243.565	541
Root diameter	df	mm	1	9.67532			261.565	541
Root radius(Left)	RfL	mm		0.88000			0.880	000
Root radius(Right)	RfR	mm		0.88000			0.880	000
Face width	b	mm		5.00000			30.000	000
OK	Cancel	Clear	Back	Default	1	F	Rack	Suppor


Fig.22.61 gear specification

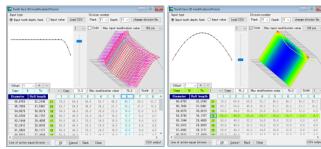

3ear Contact Others				
Item	Symbol	Unit	Pinion	Gear
Transverse module	mt	mm	4.5	303
Transverse pressure angle	æt	deg	33.1803(L)	(19.0990(R)
Base helix angle	βb	dee	23.9898(L) ,	/ 26.6768(R)
Base diameter	db	mm	72.0410(L) / 81.3373(R)	208.5397(L) / 235.4500(R)
Tooth depth	h	mm	9.0000	9.0000
Outting profile shift coefficient	xnc		0.4500	0.3000
Min involute diameter(TIF)	dt	mm	80.9964(L) / 82.2786(R)	244.5654(L) / 244.5654(R)
Max involute diameter	dh	mm	96.6753(L) / 96.6753(R)	260.8589(L) / 260.5543(R)
Normal circular tooth thickness	sn	mm	7.8727	5.2235
Transverse circular tooth thickness	st	mm	8.9164	5.9160
Over ball diameter	dp	mm	7.0000	7.0000
Over ball distance(Reference)	dm	mm	98.7896	241.2462
Over ball distance(Design)	dm'	mm	98,7896	241,2462

Fig.22.62 dimension result-1

ear Contact Others				
Item	Symbol	Unit	Pinion	Gear
Transverse contact module	cewt	deg	32.0248(L)	/ 16.8193(R)
Contact helix angle	β₩	deg	27.	6948
Contact pitch diameter	dw	mm	84.9722	245.9722
Teeth number ratio	zh		2.8947	0.3455
Effective face width	bw	mm	30.	0000
Clearance	ck	mm	1.4450	1.4450
Transverse contact ratio	εα		0.9269(L)	/ 1.2154(R)
Overlap contact ratio	εβ		1.1208(L)	/ 1.1208(R)
Total contact ratio	ε γ		2.0477(L)	/ 2.3362(R)
Sliding ratio	σ1		-0.0413(L) / -0.1682(R)	0.0396(L) / 0.1439(R)
Sliding ratio	σ2		0.1971(L) / 0.3466(R)	-0.2454(L) / -0.5304(R)
Transverse backlash	Jt	mm	0.3467(L)	/ 0.3915(R)
Backlash angle	Jθ	deg	0.5515	0.1905
Contact diameter(max)	dja	mm	96.6753(L) / 96.6753(R)	256.7924(L) / 255.3544(R
Contact diameter(min)	djf	mm	83.5856(L) / 83.6565(R)	244.5654(L) / 244.5654(R
Involute interference			No occur(Left)/	No occur(right)
Trimming			No occur(Left)/	No occur(right)
Trochoid interference			No occur(Left)/	No occur(right)
Fillet(root) interference			No occur(Left)/	No occur(risht)

Fig.22.63 dimension result-2

(a) profile modification (b) color palette distribution

Fig.22.65 profile modification (same: Fig.22.15)

O Edge analysis(edge curvature	e setting)	No	edge analysis		
Item	Symbol	Unit	Pinion	Gear	
Minimum curvature	ρ	mm			
Curvature modification range	h	mm			
Analysis teeth number	Analysi	s point			
○1 ○3 ●5	C	root + fac	æ+tip ●On	nly tooth face	
Item	Symbol	Unit	Pinion	Gear	
Face width center position	bm	mm	0.0000	0.0000	
Torque	Т	N•m ∨	1600.0000	4631.5789	
Normal forth at transverse plane	F	N	44419.2		
Modulus of elasticity	E	MPa	205800.0	205800.0	
Poisson's ratio	ν		0.3000	0.3000	
Root division number	Nh1		20	10	
Involute division number	Nh2		40	40	
Tip, edge division number	Nh3		10	20	
Face width division number	Nb		40	40	
Pitch error(μm) — Positive : wea	k contact		Analysis	tooth face	
	0.0 0	.0 0.0	Left side		

Fig.22.66 tooth surface element setting

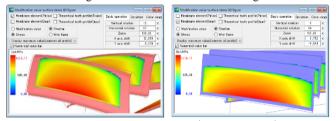


Fig.22.67 tooth surface stress (σ_{Hmax} =1210MPa)

Fig.22.68 flash temperature setting

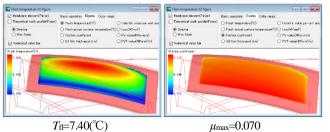
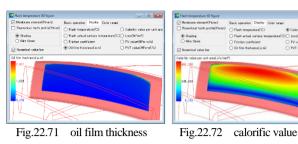



Fig.22.70 friction coefficient

Fig.22.69 flash temperature

💹 Damage probability • loss - 0 🗙 Item Unit Value Symbol Probability of scuffing occurrence % <5 ηs Probability of abrasion occurrence % 5.00 ηf Power loss % 0.46 ηe

> Fig.22.73 damage probability

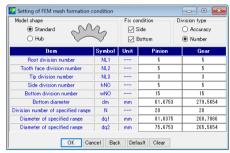
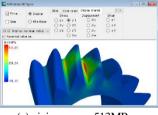
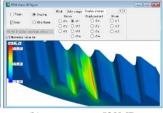
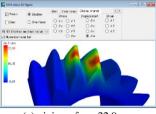
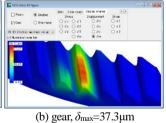
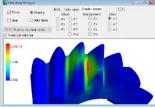




Fig.22.74 mesh model setting





O PV velue O PVT valu


(b) gear, $\sigma_{1\text{max}}$ =520MPa (a) pinion, σ_{1max} =513MPa Fig.22.75 maximum principal stress

displacement

(a) pinion, $\delta_{\text{max}}=32.9\mu\text{m}$ Fig.22.76

🗆 Piris 🖸 Gesr

(a) pinion, $\varepsilon_{1\text{max}}=2.25\times10^{-3}$ Fig.22.77 distortion

(b) gear, $\varepsilon_{1\text{max}}=2.28\times10^{-3}$